Tag Archives: wind

Heard Island’s Most Spectacular Outcrop

Head-on view of a block of Drygalski Formation (mixed volcanics and glacial sediments, here glacial sediments with volcanic clasts).  Image credit: Bill Mitchell (CC-BY).
Head-on view of a block of Drygalski Formation (mixed volcanics and glacial sediments, here glacial sediments with volcanic clasts). 53° 01.927′ S, 73° 23.704′ E. Image credit: Bill Mitchell (CC-BY).

Heard Island is home to a spectacular outcrop. It’s the coolest outcrop I’ve ever seen, besting the Bishop Tuff tablelands, the potholes along the St. Croix River at Taylor’s Falls, Zion Canyon, The Badlands, and various outcrops in Yellowstone and Grand Teton. Admittedly this outcrop doesn’t intrinsically have the scale of many of the others just mentioned—it’s a roughly car-sized block—but the power that went into creating it and the effect it created is truly amazing.

On its face (see above), it looks quite pedestrian: a block of lithified glacial till with clasts of vesicular basalt reaching up to grapefruit size. However, it’s important to consider it from a different perspective.

Side view of a block of Drygalski Formation.  From this view, it is much easier to see this is a ventifact (carved by the wind).  There is a pile of sand on leeward (left) side. Image credit: Bill Mitchell (CC-BY).
Side view of a block of Drygalski Formation. From this view, it is much easier to see this is a ventifact (carved by the wind). There is a pile of sand on leeward (left) side.
Image credit: Bill Mitchell (CC-BY).

When viewed from the side, a pile of sand in on the leeward (left, east) side of the block is evident. Additionally, the basaltic clasts of the rock face seem to be protecting the softer, tan-colored glacial matrix from the sand-blasting.

Here’s a close-up from an oblique angle:

Close-up, oblique view of the outcrop face.  Here the differential weathering (resistant grey clasts, weak tan matrix) is very apparent.  Spires of matrix are left to the leeward of the clasts, and are roughly horizontal. Image credit: Bill Mitchell (CC-BY).
Close-up, oblique view of the outcrop face. Here the differential weathering (resistant grey clasts, weak tan matrix) is very apparent. Spires of matrix are left to the leeward of the clasts, and are roughly horizontal.
Image credit: Bill Mitchell (CC-BY).

In the oblique view, the volcanic clasts making up the face of the outcrop are seen sheltering the matrix directly to the leeward from mechanical erosion. To tie all of these views together, I took a short video (embedded below).

This outcrop is located on the edge of a volcanic sand plain roughly 1.5×1.5 km. Strong westerly winds are present most of the time (9 m/s is average, measured at a site nearby).[1] In fact, the audio which accompanies the video is mostly wind noise, though there’s a little unintelligible chatter with my field partner, Carlos. Winds when the recording was made were “moderate” (for Heard Island) and from the west, exactly the kind of winds that shaped this outcrop. At the time of the recording, the winds weren’t strong enough to kick up much sand, nor were ice pellets falling from the sky, but on a gustier, stormier day, the face of this outcrop will take a beating.

Looking toward the ventifact outcrop from Windy City, Heard Island.  Although the outcrop itself is hidden behind the small reddish rise at center, this image illustrates the expanse of vegetation-free sand plain. Image credit: Bill Mitchell (CC-BY).
Looking toward the ventifact outcrop from Windy City, Heard Island. Although the outcrop itself is hidden behind the small reddish rise at center, this image illustrates the expanse of vegetation-free sand plain.
Image credit: Bill Mitchell (CC-BY).

In my travels and geo-adventures, I’ve seen differential weathering and ventifacts (outcrops shaped by wind), but never so strikingly combined as at this outcrop on Heard Island. That’s why I can confidently say it’s the coolest outcrop I’ve seen on Heard Island or anywhere else in the world.

[1] Thost, D., Allison, I. “The climate of Heard Island” in Heard Island: Southern Ocean Sentinel, ed by K. Green and E. Woehler. Surrey Beatty & Sons, Chipping Norton 2005, p. 52-68.

Advertisements

Windy City Gigapan

Processing the Windy City gigapan.  Image credit: Bill Mitchell (CC-BY).
Processing the Windy City gigapan. Image credit: Bill Mitchell (CC-BY).

This is the third in a series of three posts about the gigapan images taken on Heard Island (1: Big Ben, 2: Azorella Peninsula), with more information about the Windy City gigapan.

Windy City is located about 200 meters south of Atlas Cove, in the northwest portion of Heard Island. It comes from a fin of Drygalski Formation rocks, which are a mix of glacial sediments and volcanics, and is mostly surrounded by sand and gravel plains.

Looking closely at the outcrop, there are a number of interesting things to observe. First, there are the striking roughly-horizontal marks, which are particularly evident toward the base of the outcrop. Second, the outcrop is made of massive, fine-grained jointed rocks with few vesicles. Third, there are quite a few fractures within the rock, with discolorations along many of the cracks.

All of these observations combine into a remarkable tale of how Windy City has been formed. The massive, fine-grained, and jointed appearance leads to the conclusion that we are looking at a volcanic outcrop, rather than glacial sediments. Fracturing and discoloration have been brought on by weathering from the very wet, near-freezing environment. Finally, the wind has been a huge factor! Sand, gravel, snow, and graupel (ice pellets) have all been blasted against the side of this outcrop, primarily from the west (at right). On Heard Island, a 9 m/s wind is typical, with maximum recorded gusts exceeding 50 m/s on three days during the 1948-1954 period.[1] The high winds sandblast the outcrop, leading to the horizontal striations.

Here are a few wider-angle shots for context, and with better light than I ended up with for the gigapan.

Windy City outcrop, viewed from the north.  The gigapan image covers from my right arm to roughly the center of this image.  Image credit: Carlos Nascimento
Windy City outcrop, viewed from the north. The gigapan image covers from my right arm to roughly the center of this image. Image credit: Carlos Nascimento

Looking eastward at Windy City, with a person for scale.  The gigapanned portion of the outcrop is at right, but two spires of similarly eroded rock outcrop further to the north of the photographed portion.  The stake coming out from the outcrop is a marker for one of our temperature/light intensity sensors. Image credit: Carlos Nascimento
Looking eastward at Windy City, with a person for scale. The gigapanned portion of the outcrop is at right, but two spires of similarly eroded rock outcrop further to the north of the photographed portion. The stake coming out from the outcrop is a marker for one of our temperature/light intensity sensors.
Image credit: Carlos Nascimento

I also managed a close-up shot of one of the pieces of float.

Float rock at Windy City.  The 1:1000 metric scale at right is effectively a mm scale.  Some olive/green crystals are visible, mostly 1-5 mm in their longest dimension, which are likely olivine (possibly clinopyroxene). Image credit: Bill Mitchell (CC-BY).
Float rock at Windy City. The 1:1000 metric scale at right is effectively a mm scale. Some olive/green crystals are visible, mostly 1-5 mm in their longest dimension, which are likely olivine (possibly clinopyroxene).
Image credit: Bill Mitchell (CC-BY).

[1] Thost, D., Allison, I. “The climate of Heard Island” in Heard Island: Southern Ocean Sentinel, ed by K. Green and E. Woehler. Surrey Beatty & Sons, Chipping Norton 2005, p. 52-68.

Rubber Duckies and Other Oceanographic Equipment

Rubber ducks in the 2009 Ken-Ducky Derby, floating along an inland stream.  Image credit: Tony Crescibene (CC-BY)
Rubber ducks in the 2009 Ken-Ducky Derby, floating along an inland stream. Image credit: Tony Crescibene (CC-BY)

On January 10, 1992, on a voyage from Hong Kong to Tacoma, Washington, the cargo vessel Ever Laurel encountered rough seas and a container was washed off the ship. The container broke open and released its contents: 28,800 yellow rubber duckies and other floating bath toys. Since then, the duckies have been floating around, moved by wind and wave, and washed up on coasts around the world. By tracking the date and location of washed-up duckies, oceanographers can get a sense for the speed and direction of surface circulation at an oceanic scale. It’s like having 28,800 messages in bottles dumped from the same known location at the same known time.

Oceanographers sometimes want to be more precise in their measurements. The duckies probably floated very high in the water (at least at first), so that the wind could easily affect their direction and speed. Additionally, the rubber duckies are hard to track while they are at sea because they are small, few, and far between.

When more precise measurements are required, oceanographers turn to specially-designed drift buoys. These maintain a lower profile above water, and have a large “holey sock” sea anchor tethered to them in order to more accurately measure the ocean surface currents and not the wind. The buoys also have a thermometer—and sometimes additional sensors for salinity or barometric pressure—and a radio transmitter to establish the buoy’s position (by Doppler shift from 401.65 MHz, not GPS) and relay data via satellite back to the operations center.

Surface Velocity Program buoys around the world.  All instruments have sea surface temperature (SST), blue instruments have sea-level pressure (SLP).  Several red points near Heard Island and between Heard Island and Perth, Australia are from the recent R/V Investigator voyage the Heard Island area.  Image credit: NOAA (public domain).
Surface Velocity Program buoys around the world. All instruments have sea surface temperature (SST), blue instruments have sea-level pressure (SLP). Several red points near Heard Island and between Heard Island and Perth, Australia are from the recent R/V Investigator voyage the Heard Island area. Image credit: NOAA (public domain).

Different floats can be used to measure temperature and salinity profiles, rather than surface currents. Argo floats are autonomous diving instruments, which can maintain neutral buoyancy and perform controlled ascent/descent to 2000 m. These floats make their temperature, pressure, and salinity measurements during a 6–12 hour ascent. Upon reaching the surface, they transmit their GPS location and the recorded data back to the operations center via satellite. Argo floats are not cheap, with each carrying a price tag of around $15k.

On the Heard Island Expedition, our team will be deploying both of these types of instruments. These measurements will improve understanding of ocean circulation, heat content, and salinity, as well as providing ground-truth sea surface temperature measurements for use in weather forecasting models. No rubber duckies will be deployed, but we’ll document any we find washed up on the beaches.

Still want more marine science? Check out DeepSeaNews!

Geoscientist’s Toolkit: Radiosonde

Radiosonde launch.  Image credit: Laikolosse (CC-BY-NC).
Radiosonde launch. Image credit: Laikolosse (CC-BY-NC).

Last weekend, I had the opportunity to tour the National Weather Service‘s Weather Forecast Office in Chanhassen, MN. One of the highlights of the tour was the upper air sounding facility, which launches a radiosonde (weather balloon) twice daily (at 0000 UTC and 1200 UTC, which is 7:00 local time here in Minnesota during the summer).

Radiosondes provide crucial information about the state of the atmosphere by measuring pressure, temperature, relative humidity, wind speed, and wind direction. Wind speed and direction are determined by the movement of the balloon as measured by GPS. Observations are transmitted back to the launching station via radio, where they are merged with all the other observations around the world. The merged observations from the most recent soundings are fed into the numeric weather prediction models used by your local weather service office (and your local TV meteorologist) to create forecasts and evaluate severe weather threats.

Radiosonde instrument packages are fairly small—about the size of a thick book, like Anna Karenina, but mostly styrofoam. A wire protrudes from the instrument package which acts as the radio antenna and holds the temperature sensor away from the body of the radiosonde. The instruments are suspended on a line beneath a parachute, which is in turn held up by a large helium-filled balloon, perhaps 1.5 m in diameter (~5′). Upon release, the balloon will rise around 5-8 m/s (11-18~mph), and can reach a peak altitude of more than 38 km (23.5 miles), well into the stratosphere. At these altitudes, where pressure is less than .5% of the surface pressure, the balloon can expand to a diameter of 7.5 m (~25′).

Temperature and dewpoint profiles are often plotted as functions of pressure (closely related to altitude). In the lower part of the atmosphere, the troposphere, temperature gradually decreases as altitude increases. This is why mountains have a snowline. Beyond the troposphere lies the stratosphere. In the stratosphere, the temperature tends to increase with altitude, due to the absorption of UV light by ozone. Pictured below is a temperature profile from Chanhassen, MN, on a clear, warm day.

Temperature (right) and dewpoint (left) profile from Chanhassen, MN, on a clear, warm evening.  The x-axis is showing temperatures (°C), while the y-axis is showing pressure (in hPa; 1000 hPa is roughly surface pressure near sea level).  Image credit: University of Wyoming Department of Atmospheric Science.
Temperature (right-most dark trace) and dewpoint (left-most dark trace) profile from Chanhassen, MN, on a clear, warm evening. The x-axis is showing temperatures (°C), while the y-axis is showing pressure (in hPa; 1000 hPa is roughly surface pressure near sea level). For those curious about the purple and green lines, see here and here. Image credit: University of Wyoming Department of Atmospheric Science.

With a little training (e.g. this web course), a meteorologist can look at a temperature/dewpoint profile and identify whether it is sunny, cloudy, or if severe storms are likely.

Radiosondes are a great way to get detailed data about the state of the atmosphere. Within the US, there are roughly 90 balloon sounding stations, and there are many more stations around the globe. If I had more time and the funding to do it, I would love to send radiosondes up from Heard Island—it certainly is an under-sampled area of the globe.

Gravity Waves and Vortices at Heard Island

Gravity waves and Von Karman vortices at Heard Island, May 1, 2015.  Resolution is 250 m/pixel.  Image credit: NASA Aqua/MODIS.
Gravity waves and Von Karman vortices at Heard Island, May 1, 2015. Resolution is 250 m/pixel. Image credit: NASA Aqua/MODIS.

Last week at Heard Island, a pair of interesting atmospheric phenomena occurred and were nicely captured in the image above: gravity waves, and Von Karman vortices. Von Karman vortices have been mentioned here previously, and we will explore them in a little more depth later in this post.

Gravity waves are phenomena which occur when a parcel of air is moved out of equilibrium (e.g. lofted too high by a mountain) and then moves back toward equilibrium. The momentum of the air parcel will cause it to overshoot equilibrium (on both sides), oscillating back and forth across the equilibrium level until the energy is dampened and dissipated. This is similar to the wake of a boat, which will bring the water up and down until eventually it restores itself to an equilibrium level.

In the image, you can see the gravity waves formed by Mt. Dixon on the Laurens Peninsula, on the northwest corner of Heard Island (you won’t see the mountain, but that is where the waves begin). In the atmosphere, if the waves happen to take water through condensing/evaporating levels, clouds will form at the peaks and disappear in the troughs. The very nearest waves to Mt. Dixon are punctuated by these clear troughs, while further downwind there are still clouds in the troughs.

Another striking feature of the image is the Von Karman vortex street downwind of Big Ben, the volcano on Heard Island. Von Karman vortices are formed when the flow on the leeward side of the obstruction (here the volcano) becomes turbulent. The turbulence leads to eddy formation. Here, the eddies are particularly visible because, like with the gravity waves, some areas are evaporative and have no clouds, while others are condensing and do have clouds. As the vortex moves downwind from the island, gradually the eddies are slowed by viscosity and dissipate. Equilibrium moisture levels are also reached further downwind from the island, visible in the increased cloudcover.

Meteorology and its Application to Heard Island

Cloud vortices off Heard Island. Image credit: NASA GSFC (Terra/MODIS, 9/19/2011 for you satellite imagery junkies).

Meteorology is an important consideration for any outing, be it a trip to the grocery store or an extended expedition. You will prepare differently if the temperature is hot enough to melt butter in the shade than you would if it’s cold enough to flash-freeze a pot of boiling water.

There are two different things we will need to keep in mind for these preparations: climate and weather. Although they are related, they are fundamentally different. Climate is long-term, whereas weather is short-term. For instance, the average high temperature* for Minneapolis for January 4th is 24 F. That’s the climatological average; if you’re planning a trip to Minneapolis for January 4, 2016, that’s a ballpark of what to expect. Weather is more variable, of course. In 2015, the high temperature on January 4th was 12 F; in 2014, it was 35 F. That’s weather. Here’s an analogy: take two six-sided dice. On average, when you roll them, their sum will be seven (that’s the climate). However, you shouldn’t be surprised with a roll of three!

Last month at the Five Thirty Eight blog, Nate Silver did a great job analyzing the amount of weather at various cities across the US, and in general exploring this distinction and the limits of its usefulness. Unfortunately, his title is a bit misleading:

“Which City Has The Most Unpredictable Weather?”

His use of unpredictable has nothing to do with the skills or abilities of the local meteorologists.** Instead, it is a reflection of the variability away from the climate average. That is, if you use the climate average as a forecast, how likely is it to be correct? In some areas, such as Phoenix, AZ, the climate average high temperature is a very good predictor. In others, like Minneapolis, the departures from average can be larger and more frequent, as exemplified above.

So, now that we have that discussion out of the way, and deferring things like uncertainty to another post, what do we know about Heard Island?

Expect cool temperatures, wet weather, and plenty of wind. The vast icy waters surrounding the island keep conditions from changing much. Temperatures remain near freezing year-round, with monthly average temperatures in summer still only 5.2 C (~41 F). The ocean provides plenty of moisture too; a research expedition from 1948-1954 recorded precipitation on 75% of days at Atlas Cove, one of the more accessible parts of the island.

The volcano can make its own weather by disrupting the west-to-east winds. Windward locations tend to see more fog and rain (like the coastal parts of San Francisco), while leeward areas see more sun and warmer temperatures (like Berkeley or Palo Alto). Lenticular clouds, formed when the humid air is pushed up around the mountain, are also found at Heard Island. Other conditions can cause cloud vortices when the smooth flow of wind is disrupted while passing the island, as seen in the picture at the top of this post.

In the southern hemisphere, there is much less land to disrupt the smooth flow of air than there is in the northern hemisphere. Consequently, the winds tend to be stronger more consistent. At Atlas Cove, the average wind speeds are around 26-33.5 km/h (16-21 mph), with gusts recorded up to ~180 km/h (110 mph). That means we can expect damage similar to that found from a borderline EF1/EF2 tornado.***

In short, the climate of Heard Island is near-freezing, wet, and strongly influenced and moderated by the water around it. Be prepared for cold, snow, rain, and wind. There will be some sunshine in there too, but it won’t be the norm.

* The National Weather Service computes this over the 30-year period of 1981-2010.
** Variable would have been a more appropriate word, because devious has deviated from the sense which would be useful here.
*** Tornado categories use the Enhanced Fujita scale (0-5, 5 is strongest), and are estimates of wind speed based on damage. Obviously we’d rather use a direct measurement and have our camp sturdy enough to not have damage to use for estimating wind speed. More on the inner workings of the (enhanced) Fujita scale can be found at the NOAA Storm Prediction Center.