Tag Archives: Landslides

Heard Island Landslide!

Landslide on Compton Glacier, Heard Island, 2017-07-21.  Image credit: processed by Bill Mitchell (CC-BY), using USGS/Landsat 8 data.
Landslide on Compton Glacier, Heard Island, 2017-07-21. Image credit: processed by Bill Mitchell (CC-BY), using USGS/Landsat 8 data.

On July 21, 2017, the Landsat 8 satellite imaged a fresh landslide on Heard Island, seen in the picture above. The slide occurred in the northeast portion of the island, on top of Compton Glacier, and I have annotated it for clarity in the image below.

Satellite image of Heard Island with annotation marking the region where the landslide is present.  Image credit: processing and annotation by Bill Mitchell (CC-BY), data from USGS/Landsat 8.
Satellite image of Heard Island with annotation marking the region where the landslide is present. Image credit: processing and annotation by Bill Mitchell (CC-BY), data from USGS/Landsat 8.

This landslide is quite easy to spot because of the relatively clear conditions over Heard Island and the very high contrast between the dark, presumably-basaltic rocks and the white snow of the glaciers. Given that it is presently austral winter and Heard Island is located south of the Antarctic Convergence, the rate of snow accumulation should be quite high. It will be interesting to see how long it takes to be covered by snow.

I am fairly convinced that this is a rock- or landslide rather than an eruption. The head of the flow is along the top of a steep ridge, and the infrared imagery shows no thermal anomaly in this part of the island.

What’s interesting to me is that this slide appears to have eroded some snow on top of the glacier which then caused a secondary avalanche from a north-facing slope. I’ve annotated this in the image below.

Region of secondary avalanche.  Image processing and annotation: Bill Mitchell (CC-BY), data from USGS/Landsat 8.
Region of secondary avalanche. Image processing and annotation: Bill Mitchell (CC-BY), data from USGS/Landsat 8.

This landslide has a run-out of about 2.5 km, an elevation drop of ~750 m, and a total affected area of ~0.8 km2. Several flow tongues are evident in the close-up image, even though the satellite imagery resolution is a modest 15 m/pixel.

Close-up of landslide on Compton Glacier, Heard Island.  Several flow paths of dark rock are evident here.  Image processing: Bill Mitchell (CC-BY), data from USGS/Landsat 8.
Close-up of landslide on Compton Glacier, Heard Island. Several flow paths of dark rock are evident here. Image processing: Bill Mitchell (CC-BY), data from USGS/Landsat 8.

From this image, it looks like the rockfall mostly happened in the portion running west-to-east, then as it turned the corner to head northeast, transitioned to a surface flow. In many ways, this reminds me of the Mt. Dixon (New Zealand) rock avalanche in 2013 (coverage by Dave Petley here and here, among others). The video below is from the Mt. Dixon (NZ) rock avalanche, but is likely similar to what occurred on Heard Island.

A fly-over after the Mt. Dixon (NZ) rock avalanche provided more video of the rock avalanche scar.

I look forward to seeing more images of this slide as they come in. Heard Island is imaged roughly every 8 days by Landsat 8, which as far as I can tell is the only publicly available high-resolution imagery for the island now that EO-1 has been decommissioned.

Advertisements

Various Interesting Articles

Thin section photomicrograph of a gabbro, (crossed polarizing filters).  Image credit: Siim Sepp (CC-BY-SA).
Thin section photomicrograph of a gabbro, (crossed polarizing filters). Image credit: Siim Sepp (CC-BY-SA).

There have been a couple of interesting articles I’ve come across recently, which are worth mentioning.

First, Emily Lakdawalla has an excellent summary of the Pluto discoveries from both the American Geophysical Union’s Fall Meeting and the [NASA] Division of Planetary Science meeting. There’s a lot of new stuff there, and it’s pretty exciting.

Second, the Joides Resolution blog (the Joides Resolution is an ocean sediment coring vessel) has a series of posts (1, 2, 3) on geologic thin sections. Not surprisingly, the thin sections pictured are from rocks such as gabbros or sheeted dikes, which are expected in oceanic crust and in ophiolites (oceanic crust exposed on land). There’s a great exposure of the Coast Range Ophiolite just west of Patterson, CA, in Del Puerto Canyon, which is described in a recent blog post by Garry Hayes.

Third, Dave Petley has a great post on The Landslide Blog about the recent landslide in Shenzhen, China. I find landslides fascinating, and always learn something when I read The Landslide Blog.

Topographic Map(s) of Heard Island, and a Big Landslide

Heard Island Map, 1985.  Image credit: excerpt from the Division of National Mapping.
Heard Island Map, 1985. Image credit: excerpt from the Division of National Mapping.

A few days ago, I posted about topographic maps, including a discussion of how a small army of small surveyors made one of my local park. At Heard Island, surveying isn’t a walk in the park.

Many maps have been made of Heard Island, showing the topography and general geographic features of the island, and sometimes including the locations of major macrofauna (penguins, elephant seals, etc.).[1] An excerpt I made from one produced in 1985 is shown above. Although there are more recent maps available, including maps with higher topographic resolution, this one is more visually illustrative of the landforms.

Maps of Heard Island are difficult to produce, in part because there is a dearth of high-resolution, high-quality data. In most parts of the developed world, detailed topographic maps are made not through boots-on-the-ground surveying but by airborne LiDAR. For instance, aerial imagery and LiDAR provided very useful data for understanding the Oso landslide in Washington state. However, aerial flights over Heard Island are much less frequent, and mapping efforts there come without the obvious benefits to the local populace.

LiDAR map near the Oso landslide (red region at right), and a larger landslide complex (red region at center).  Image credit: Dan McShane.
LiDAR map near the Oso landslide (red region at right), and a larger landslide complex (red region at center). Image credit: Dan McShane.

Surveying the whole island by foot at high detail is untenable, because the area is quite large, the terrain difficult, and the weather inclement, even in the summer. However, portions have been mapped by hand (and theodolite).

But perhaps the biggest challenge Heard Island presents to cartographers is the rapidity of its changes. Volcanic eruptions can add new land to the island, or make parts higher. Glaciers can carve out the rocks and leave them as till, sometimes in the ocean, sometimes in the lagoons, and sometimes as moraines on the land. Not only can the glaciers carve out the rocks, but as less snow accumulates on the glaciers than is lost to melting, the glaciers will retreat. This opens up new land which before had been covered in ice. Stephenson Glacier, on the southeast corner of Heard Island, has retreated significantly in the last 60-70 years, revealing a great deal of new terrain.

Steep slopes and the very wet environment (lots of snow and rain) lead to very high rates of erosion. Outwash channels from the glaciers can carve into the rock and transport sediment into lagoons and near-shore areas.

Finally, there’s another agent of change: landslides. Take a look at the LiDAR image above, showing the landslide region. Now take a look at the southwest portion of the Heard Island shown at the top of the post. The curving crest along the north and east sides of the volcano, as well as the ridge extending to the south-southwest are interpreted to be the boundary (technical term: scarp) of a debris avalanche (a landslide-like process).[2]

Taken as a whole, these processes change the landscape significantly on a decade-to-century timescale, if not even more rapidly. This is why making maps and keeping them current is so valuable: it give us a way to see how the landscape is changing over time. Perhaps the upcoming Heard Island Expedition will do some mapping and be able to provide updates which reflect the latest changes at Heard Island.

[1] https://www1.data.antarctica.gov.au/aadc/mapcat/list_view.cfm?list_id=1, accessed Feb. 6, 2015. Free registration required for map download.

[2] Quilty, P. G. & Wheller, G. 2000; Heard Island and The McDonald Islands: a Window into the Kerguelen Plateau. Papers and Proceedings of the Royal Society of Tasmania. 133 (2), 1–12.