When Counting is Difficult

A fulmar prion glides swiftly over the swell of the Southern Ocean.  Image credit: Bill Mitchell (CC-BY)
A fulmar prion glides swiftly over the swell of the Southern Ocean. Image credit: Bill Mitchell (CC-BY)

During the Heard Island Expedition, including the nearly three weeks at sea on the Southern Ocean, I made a few observations for a citizen science project: eBird. It’s a pretty simple system: identify and count all the birds you see in a small area and/or time period, then submit your list to a centralized database. That database is used for research, and keeps track of your life/year/county lists. With so few observations in the southern Indian Ocean in March and April (and no penguins on my life list before the expedition), I figured I would make a few counts.

On its face, identifying and counting birds is straightforward. Get a good look, maybe a photograph, and count (or estimate) the number present of that species.

It gets more difficult when you go outside your usual spot, particularly when the biome is much different. Although I have some familiarity with the Sibley Guide for North American birds, I’ve never payed very close attention to the seabird section, and have never birded at sea before. All the birds I expected to see on this expedition would be life birds, and that changes things a bit. I would have to observe very closely, and photograph where I could.

Before the expedition, I read up on the birds I would likely find on the island. In addition to four species of penguins, there were three species of albatross (wandering, black-browed, and light-mantled sooty) and two species of prions (Antarctic and fulmar). Albatrosses are large and the species near Heard are readily distinguished. Prions, however, can be quite difficult even with good observations. They’re not quite to the level of the Empidonax flycatchers, but close.

At sea, we usually had prions flying near the ship. I took pictures, knowing that I might be able to get help with ID if I needed it—and of course I needed it.

That’s where the problem started: I had a count where I had observed 40 prions flying around the ship, which I identified only to genus level. From my reading on Heard Island, I knew that breeding populations for prions on Heard Island were generally larger Antarctic prions than fulmar prions, with an estimate of a 10:1 margin. I had four clear pictures of individual birds, which my helpful eBird reviewer was able to get to an expert for further identification. All four were fulmar prions.

With 40 birds identified to genus level, and four photos of random birds identified to species level as a species expected to be a minor proportion, how many of the original 40 birds can I reasonably assign as fulmar prions?

I have an answer to this question, which I will post next week.

Advertisements

Azorella Peninsula Gigapan

Processing the Azorella Peninsula gigapan.  Image credit: Bill Mitchell (CC-BY).
Processing the Azorella Peninsula gigapan. Image credit: Bill Mitchell (CC-BY).

This is the second in a series of three posts about the gigapan images taken on Heard Island (1: Big Ben, 3: Windy City), with more information about the Azorella Peninsula gigapan.

The Azorella Peninsula is on the northern edge of the main part of Heard Island, east of the Laurens Peninsula. It forms the eastern boundary of Atlas Cove (Laurens Peninsula forms the western boundary; see map below). At the west end of the Azorella Peninsula’s southern margin is the heritage zone around the ANARE campsite, two water-tank shelters, a green “apple” shelter, and the area where our expedition made camp. That many of the camps are all in the same area is no accident: Atlas Cove is probably the best harbor on the island (though still not sheltered from a northerly swell), there is a convenient beach for boat landings, and a small step up of elevation from the lava flows of the Azorella Peninsula provides higher ground than the sometimes-inundated Nullarbor.

Heard Island Map, 1985. Image credit: excerpt from the Division of National Mapping.
Heard Island Map, 1985. Image credit: excerpt from the Division of National Mapping.

Getting a gigapan here was not as straightforward as I had hoped. Although there were plenty of pahoehoe flow tops, cracks where a flow had deflated and collapsed in on itself, and other lava flow features, few of them were of a scale and in a location which enabled them to be nicely gigapanned with the tripod I had. With another 3–5 m of elevation, the gigapan would be spectacular.

As it was, there were some additional features besides the lava flows which I wanted to include. For one, the landscape has significant erosional processes happening, and there are sandy areas which get washed when it rains. Even more than the rain, though, the wind creates eolian features. Many of the small rocks have a little dune in their lee, and often the Kerguelen cabbage and Azorella moss grow on the leeward side of rock barriers as well. Some of this organization is visible in the gigapan.

At the top right of the Gigapan image, and lost to the fog and overexposure of the image, is a strongly layered prominence: Corinth Head. Although I would have liked to go see this outcrop up close, our permit did not allow that—the area is a major nesting site for burrowing seabirds, and in places there are lava tubes with thin ceilings which may give way underfoot.

Corinth Head, Heard Island, viewed from the south (further east than the Gigapan was taken).  Layering is clearly visible, and is likely of igneous origin.  Image credit: Bill Mitchell (CC-BY).
Corinth Head, Heard Island, viewed from the south (further east than the Gigapan was taken). Layering is clearly visible, and is likely of igneous origin. Image credit: Bill Mitchell (CC-BY).

Where the Azorella Peninsula lava flow field meets the Nullarbor, there was a little flow which caught my eye. There, one flow clearly traveled through an older channel or tube. Weathering has removed some of the older flow, giving a cross-sectional view of the dark vesicular rock.

Lava flows of the Azorella Peninsula meet the Nullarbor.  An older, grey unit is visible with a redder unit in the middle.  Notebook is 19 cm wide.  Image credit: Bill Mitchell (CC-BY).
Lava flows of the Azorella Peninsula meet the Nullarbor. An older, grey unit is visible with a redder unit in the middle. Notebook is 19 cm wide. Image credit: Bill Mitchell (CC-BY).

Some lava tubes showed obvious signs of deflation or lava tube collapse. The one seen below had eolian features nearby, and the Kerguelen cabbage and Azorella moss can be seen growing on the leeward side of the rocks. An elephant seal is also present.

Deflated lava flow beside the Nullarbor on the Azorella Peninsula, Heard Island.  Some eolian features are present.  Note the Azorella moss and Kerguelen cabbage at right, in the lee of the solid rocks.  The tan mass at right is an elephant seal.  Notebook is 12x19 cm.  Image credit: Bill Mitchell (CC-BY).
Deflated lava flow beside the Nullarbor on the Azorella Peninsula, Heard Island. Some eolian features are present. Note the Azorella moss and Kerguelen cabbage at right, in the lee of the solid rocks. The tan mass at right is an elephant seal. Notebook is 12×19 cm. Image credit: Bill Mitchell (CC-BY).

Finally, here is another example of a collapsed lava tube, which shows off a cross-section of the top of the lava tube as well as some pahoehoe flow tops.

A collapsed lava tube on the Azorella Peninsula, Heard Island, gives a cross-sectional view of the roof of the lava tube.  Kerguelen cabbage plants in foreground are roughly 25 cm across.  Several pahoehoe flow tops are visible: small-scale in the foreground, and large-scale in the center toward the top of the image.  Image credit: Bill Mitchell (CC-BY).
A collapsed lava tube on the Azorella Peninsula, Heard Island, gives a cross-sectional view of the roof of the lava tube. Kerguelen cabbage plants in foreground are roughly 25 cm across. Several pahoehoe flow tops are visible: small-scale in the foreground, and large-scale in the center toward the top of the image. Image credit: Bill Mitchell (CC-BY).