Geoscientist’s Toolkit: Radiosonde

Radiosonde launch.  Image credit: Laikolosse (CC-BY-NC).
Radiosonde launch. Image credit: Laikolosse (CC-BY-NC).

Last weekend, I had the opportunity to tour the National Weather Service‘s Weather Forecast Office in Chanhassen, MN. One of the highlights of the tour was the upper air sounding facility, which launches a radiosonde (weather balloon) twice daily (at 0000 UTC and 1200 UTC, which is 7:00 local time here in Minnesota during the summer).

Radiosondes provide crucial information about the state of the atmosphere by measuring pressure, temperature, relative humidity, wind speed, and wind direction. Wind speed and direction are determined by the movement of the balloon as measured by GPS. Observations are transmitted back to the launching station via radio, where they are merged with all the other observations around the world. The merged observations from the most recent soundings are fed into the numeric weather prediction models used by your local weather service office (and your local TV meteorologist) to create forecasts and evaluate severe weather threats.

Radiosonde instrument packages are fairly small—about the size of a thick book, like Anna Karenina, but mostly styrofoam. A wire protrudes from the instrument package which acts as the radio antenna and holds the temperature sensor away from the body of the radiosonde. The instruments are suspended on a line beneath a parachute, which is in turn held up by a large helium-filled balloon, perhaps 1.5 m in diameter (~5′). Upon release, the balloon will rise around 5-8 m/s (11-18~mph), and can reach a peak altitude of more than 38 km (23.5&nbps;miles), well into the stratosphere. At these altitudes, where pressure is less than .5% of the surface pressure, the balloon can expand to a diameter of 7.5 m (~25′).

Temperature and dewpoint profiles are often plotted as functions of pressure (closely related to altitude). In the lower part of the atmosphere, the troposphere, temperature gradually decreases as altitude increases. This is why mountains have a snowline. Beyond the troposphere lies the stratosphere. In the stratosphere, the temperature tends to increase with altitude, due to the absorption of UV light by ozone. Pictured below is a temperature profile from Chanhassen, MN, on a clear, warm day.

Temperature (right) and dewpoint (left) profile from Chanhassen, MN, on a clear, warm evening.  The x-axis is showing temperatures (°C), while the y-axis is showing pressure (in hPa; 1000 hPa is roughly surface pressure near sea level).  Image credit: University of Wyoming Department of Atmospheric Science.
Temperature (right-most dark trace) and dewpoint (left-most dark trace) profile from Chanhassen, MN, on a clear, warm evening. The x-axis is showing temperatures (°C), while the y-axis is showing pressure (in hPa; 1000 hPa is roughly surface pressure near sea level). For those curious about the purple and green lines, see here and here. Image credit: University of Wyoming Department of Atmospheric Science.

With a little training (e.g. this web course), a meteorologist can look at a temperature/dewpoint profile and identify whether it is sunny, cloudy, or if severe storms are likely.

Radiosondes are a great way to get detailed data about the state of the atmosphere. Within the US, there are roughly 90 balloon sounding stations, and there are many more stations around the globe. If I had more time and the funding to do it, I would love to send radiosondes up from Heard Island—it certainly is an under-sampled area of the globe.

Advertisements