AGU 2017, Day 4

Today was an exhausting day. This morning I presented my poster on the retreat of Stephenson Glacier, Heard Island, and was talking with people at my poster much of the four-hour session. It was very valuable to discuss my research, get input on some ideas, and to come up with a few new ideas for further work to do after this gets published. One thing which became quite apparent was the utility of social media in getting word out about my poster. Several people came by to see what I was doing as a fairly direct result of my engagement in social media, particularly on Twitter.

I also continued to come across people I knew from grad school or undergrad. While it’s a bit awkward to say hi to someone you can’t quite place in the different context, it’s fun to see them regardless.

After my presentation, I spent the afternoon wandering around the exhibit hall and, to a lesser extent, the rest of the poster hall. Day four of AGU often brings with it a combination of excitement for new ideas and projects with the exhaustion of having been walking around a lot.

At the end of the day, I headed over to catch a few planetary science talks. The first one, by Morgan Cable of JPL, was a very interesting presentation about lab-simulated dissolution and co-crystallization of organic compounds like might be found on Titan. Had my computer had batteries and if the wifi was likely to work, I probably would have live-tweeted that talk. It was one of the clearest talks I’ve seen this year. The second (and final) talk was by Sarah Horst. She introduced us to several ocean-bearing worlds that have organic compounds (Titan, Enceladus, and Europa), the extent of work that has been done to understand those organic compounds (surprisingly little), and reminded us that there are no current plans to go back to Titan or Enceladus. There is definitely some good data to be had there if we can get an appropriate mass spectrometer and other analytical equipment to the planetary bodies.

In the evening I joined other former and current students from my undergraduate institution for a mini-reunion, which was fun. Tomorrow is the last day, so I have also been trying to make sure I schedule times to see people before we all leave.

Advertisements

AGU 2017, Day 3

What a day! I fortuitously came across quite a few people I know from either my undergraduate institution or my PhD work, and managed to catch up with some of them. I explored about a third of the exhibits in the exhibit hall, and learned about cool new instrumentation, including the Raspberry Shake.

In the afternoon, I went to a volcanology session about flood basalts and large igneous provinces, and it was riveting. Loyc Vanderkluysen is working on a new classification scheme for the Deccan Traps, which cover an area roughly the size of Texas and may have covered three times that area when they were first erupted. These lavas, found in modern-day India, have formation boundaries defined by their chemistry, but the choice of chemistry to use for classification and differentiation seems like it could be improved by modern data analysis techniques.

But the talk that really stood out was by Courtney Sprain, talking about dating the Deccan Traps. Papers published in 2015, one using U/Pb dating (Schoene et al.) and the other using Ar/Ar dating (Renne et al.), concluded that the Deccan Traps were erupted almost entirely between 67 Ma (Mega-annum, million years ago) and 65 Ma, right across the Cretaceous-Paleogene (K-Pg) boundary. However, the middle portion of the sequence was not dated sufficiently precisely to test whether the Chixulub impact caused increased volcanism in the Deccan Traps. In this new work, many additional samples have been analyzed with high-precision Ar/Ar using many multi-grain step-heating experiments. As a result, the data are now sufficient to test whether volcanism changed or increased at the same time as the impact. The K-Pg boundary occurs right at an important formation boundary, and Nd isotopes shift there (toward less crust-like, more mantle-like ratios) as well. Feeder dikes, which lower in the sequence were generally oriented in one direction, became randomly oriented above the chronological boundary.

All of which is to say, the new data are of a quality where it would be possible to falsify the hypothesis that the impact caused increased volcanism, but they do not falsify that hypothesis. Indeed, they are quite consistent with it. Wow!

Claims of impact-triggered flood basalts are rather radical, and need some solid data to back them up. The speakers in these sessions were clear to say that this isn’t by any means sufficient yet to declare the new paradigm accepted and move on. Still, this was a pretty big test of the hypothesis, and it came through unscathed.

In the morning, I will be presenting my poster on the retreat of Stephenson Glacier, Heard Island (poster C41B-1222). This conference has been keeping me very busy, and it looks like that will continue through the time I leave. I’m very excited about what I’ve been learning, the people I’ve been talking with, and the ideas that are coming together as a result of this conference. The long conference center (it’s nearly 1 km end-to-end) is keeping me in good shape, too!

AGU 2017, Day 2

The second full day of the American Geophysical Union conference is always an interesting one, as the exhibit hall opens. Vendors, funding agencies, publishers, universities, and other organizations are present at booths, filling a huge hall. It’s a great place to go to see the latest and greatest technology, such as the 4 meter long flume table from Emriver. I took a picture, but forgot to bring my card reader so I have no way to transfer it off of my camera. It shall have to suffice for now to say that it was stunning.

In addition to some very interesting discussions with people at posters, I went to the Volcanology, Geochemistry, and Petrology award lectures. The second lecture, by Craig Manning, was a fairly clear discussion about the inadequacies of previous thinking about thermodynamics in hot (900–1100 °C), high-pressure (5–10 kbar [I think I have that pressure right]) hydrothermal systems (e.g. subduction zones) and some new experimental results and conceptual models which seem to fit better.

My mind was blown fairly early in the talk when he pointed out that under those temperature and pressure conditions, neutral pH for water is around 4. I also haven’t thought enough about ionic liquids (e.g. molten sodium chloride), or the ternary phase diagram of H2O, CO2, and NaCl, particularly not under high temperature/pressure. However, in the thermodynamic sense these systems do have some predictable behaviors when thought of this way, and the data seem to fit those predictions. The fluids have a tendency to become quickly rich in silica (SiO2), which gives rise to the quartz veins commonly found in metamorphic rocks. In these models it is not hard to then transition from silica-in-salt-solution toward partial melting of a type found in metamorphic and volcanic rocks.

The afternoon held interesting talks on isotope systems of relevance to volcanic measurements (estimating sulfur emissions and speciation), as well as good discussions with people I met in the hallways or poster sessions. Later in the afternoon I came across a former labmate, and it was good to catch up with her for a while and discuss the various challenges of being an early-career scientist. Dinner, debrief, and further discussion of early-career issues with my conference buddy capped off my day.

Tomorrow has yet more interesting talks and posters, and there are a few people on my to-talk-with list who I will need to track down.

AGU 2017, Day 1

The American Geophysical Union fall meeting is always an interesting conference, in part because of the diversity of topics covered. I started off the day learning about the effects of the solar eclipse on the ionosphere. From there it was off to posters, where I had some interesting conversations about polar atmospheric chemistry and met some grad school friends I hadn’t been expecting to see here.

Unfortunately, the wifi at the convention center was very poor, so it looks like it will be difficult to tweet this conference, at least from the scientific side.

After lunch, I went to a few more posters that had been on my to-see list, mostly related to glaciers, glacial melt, and glacial retreat. Some of the education talks looked quite interesting, so I saw a few of those before running across grad school friends and joining them for the big Planetary Science lecture, on the Juno mission to Jupiter.

Dinner with some grad school friends was good, as was the after-dinner expedition for beignets (French donuts, except with no holes). We had some very interesting discussions about working in science, both in academia and in industry, as well as on some of the challenges facing early-career researchers.

AGU 2017, Day 0

This week is the American Geophysical Union’s fall meeting, which is taking place in New Orleans, Louisiana. AGU is a big conference, which recently has been drawing 20K-25K attendees each year. With the conference scientific program beginning tomorrow, many people are arriving today.

Getting 20,000 scientists together in one city when they mostly arrive on one day takes up quite a bit of the inbound capacity on transportation. My flight from Minneapolis today, for instance, was probably more than 50% meeting attendees—many of whom are are recognizable by their poster tube decked out in NASA, USGS, and other Earth science related stickers.

The community is also weirdly small. On the plane was a visiting professor from my undergraduate institution, and when I got in line for the downtown hotel shuttle, two alumni (each one year apart from me) were on either side of me.

Upon reaching the hotel, I settled in and started the process of figuring out what talks, posters, and events I should get to this week. Thursday morning will be my poster, which I’m very excited for. There are some sessions on Wednesday related to my doctoral work (and co-chaired by my doctoral adviser) which look very interesting. Several networking events will be happening as well, with varying degrees of field specificity.

Eventually I’d had enough of scheduling and decided it was time to eat food. I walked over to the French Quarter and, having again crossed paths with the prof I’d met in the Minneapolis airport, found one that had good jambalaya. A long walk and some further scheduling later, and it’s now time for bed. Tomorrow is a big day, with lots of networking to do and cool science to go learn about!

Heard Island Poster at the 2017 American Geophysical Union Fall Meeting

Glacial ice on the beach at Corinthian Bay, Heard Island. Image credit: Bill Mitchell (CC-BY).
Glacial ice on the beach at Corinthian Bay, Heard Island. Image credit: Bill Mitchell (CC-BY).

In three weeks I will be attending the American Geophysical Union (AGU) fall meeting, and on Thursday morning I will be presenting a poster about the Retreat of Stephenson Glacier, Heard Island, from Remote Sensing and Field Observations.1,2 I am very much looking forward to it, and if you will be at the meeting I hope you will stop by. There is likely to be a journal article forthcoming on this work, and the conference will be a great opportunity to discuss my project with glaciologists and get feedback on it—exactly what poster sessions at conferences are for, from what I understand.

Although my analysis is pretty much done, there is still quite a bit of work to go. Most importantly, the poster needs to be created. For that, I’ll start with a list of graphics and figures that will be needed for the poster:

  • Map of the world, showing the location of Heard Island
  • Map of Heard Island, showing the location of Stephenson Glacier
  • Satellite image(s) of Stephenson Glacier, showing the retreat
  • Field photo(s) of Stephenson Glacier from the Heard Island Expedition3
  • Graph showing the area of the glacier over time
  • Other maps/graphs as needed

From that graphical outline will follow a minimal amount of text to guide a reader through the project with introduction, methods, results, and discussion sections. Once all that gets put together, it gets reviewed, sent to my co-author for further review, then changes are made until we’re satisfied and it’s sent off to the printer.

Following the conference, I hope to get a more detailed manuscript written. When it is ready for submission, I expect it will go to EarthArxiv, a new Earth science pre-print server, as well as an appropriate journal with open-access options.

Publication of that article would be the final step for this project, but there are quite a few new project ideas which have sprung up while I’ve been preparing this poster and article. One of the great things about using openly available data is that there are so many projects which could be done relatively simply and at little cost. Of course, a few other ideas have come to mind—and are perhaps more interesting—that would need further field studies.

Notes:

  1. Poster C41B-1222.
  2. Unless the affiliation is “Unaffiliated” for the lead author, it is incorrect. I have tried to get it corrected, but apparently the system can’t handle that.
  3. During the Heard Island Expedition, although I was close to Stephenson Glacier I was unable to travel to that part of the island. Fortunately my co-author and several other expedition members did get there and took lots of photographs among other sampling and documentation efforts.

Mapping the Eclipse for a Citizen Science Project

Map of the continental United States showing the amateur radio grids and path of the eclipse.  Image credit: Bill Mitchell (CC-BY).
Map of the continental United States showing the amateur radio grids and path of the eclipse. Image credit: Bill Mitchell (CC-BY).

During the solar eclipse next week, I will be at the Science Museum of Minnesota with a citizen science project studying the effects of the eclipse on radio propagation. While there are many radio-related projects going on—the most accessible being a study of AM radio reception—I will be using amateur radio to make contacts and provide reception reports during the eclipse. One of the important pieces of information that will be exchanged with other amateur stations is a “grid”, which is a shorthand for rough latitude and longitude.

Amateur radio grids are 2° longitude by 1° latitude, and represented with pairs of letters and numbers. For instance, the Science Museum of Minnesota is located in EN34. Fields (20°x10°) are designated with letters, and increase from -180 longitude and -90 latitude (AA) to 160 longitude and 80 latitude (RR). Fields are further subdivided into grids using numbers, which increase from 00 at the southwest corner to 99 at the northeast. Looking again at our example, the first character, E, indicates a location between 100° and 80° W longitude, and N indicates a location between 40° and 50° N latitude. The numbers provide further refinement on that range. The 3 means the longitude is between 6° and 8° east of the west edge of the field (i.e. 94°–92° W), and the 4 after it means the latitude is 4°–5° north of the south edge of the field (i.e. 44°–45° N). Further letters (A-X) and numbers can be used to specify locations more precisely in a similar fashion. Longitude is always indicated first, and increases west-to-east; latitude is indicated second, increasing south-to-north.

For the event, I want to have a map of the continental US and southern Canada with the grids outlined on it. During the event as we hear which grid other stations are in, we can mark their location on the map. Unfortunately, I was not able to find a map that I wanted to use for this purpose, so I decided to make my own with QGIS.

For my eclipse map, I needed to gather a few datasets. First and foremost, I needed a US state map. Canadian provinces were also a high priority. Once I had those, I was still missing Mexico and other North American areas, so I found a world map as well. That covered the basics, but as long as I’m making a special map for the eclipse, I wanted to have the path of totality, which I found from NASA. I unzipped each of those files into a folder for my eclipse grid map project.

In QGIS, I loaded all the datasets (vectors). The Canadian provinces were in a different projection, so I saved (converted) it to the projection I wanted (EPSG:4269), which is a simple latitude-longitude projection. I found that the Canadian provinces included detailed coastlines and islands, so I simplified it (Vector | Geometry Tools | Simplify Geometry) using a tolerance of 0.01 or something like that. The islands cleaned up a little, but the overall shapes didn’t change much.

With the datasets loaded, I needed to make my field and grid boundaries. Using the grid tool (Vector | Research Tools | Vector Grid) I created the field grid (xmin=-180, xmax=180, ymin=-90, ymax=90, parameter x=20, parameter y=10) and the fine grid (same except parameter x=2, parameter y=1).

I looked up the coordinates for the Science Museum of Minnesota, and put them into a CSV text file. By loading in that CSV file, I put a star on the map where I will be located.

From that point, it was just a matter of adjusting colors and display properties. I gave reasonable, light colors to the US and Canada, and thickened the borders for the US states. I used a dashed line for the field lines, and a lighter grey dotted line for the smaller grids. The eclipse path I made a partially-transparent grey.

That’s about all there was to it! In the print composer I added in some of the labels for a few grids to help demonstrate the letter/number scheme.

Results (PDF): 8.5″x11″, 11″x17″.

%d bloggers like this: